87 research outputs found

    A new monolithic approach for mid-IR focal plane arrays

    Get PDF
    Antimonide-based photodetectors have recently been grown on a GaAs substrate by molecular beam epitaxy (MBE) and reported to have comparable performance to the devices grown on more expensive InSb and GaSb substrates. We demonstrated that GaAs, in addition to providing a cost saving substrate for antimonide-based semiconductor growth, can be used as a functional material to fabricate transistors and realize addressing circuits for the heterogeneously grown photodetectors. Based on co-integration of a GaAs MESFET with an InSb photodiode, we recently reported the first demonstration of a switchable and mid-IR sensible photo-pixel on a GaAs substrate that is suitable for large-scale integration into a focal plane array. In this work we report on the fabrication steps that we had to develop to deliver the integrated photo-pixel. Various highly controllable etch processes, both wet and dry etch based, were established for distinct material layers. Moreover, in order to avoid thermally-induced damage to the InSb detectors, a low temperature annealed Ohmic contact was used, and the processing temperature never exceeded 180 °C. Furthermore, since there is a considerable etch step (> 6 μm) that metal must straddle in order to interconnect the fabricated devices, we developed an intermediate step using polyimide to provide a smoothing section between the lower MESFET and upper photodiode regions of the device. This heterogeneous technology creates great potential to realize a new type of monolithic focal plane array of addressable pixels for imaging in the medium wavelength infrared range without the need for flip-chip bonding to a CMOS readout chip

    InSb avalanche photodiodes on GaAs substrates for mid-infrared detection

    Get PDF
    We present indium antimonide-based devices for mid-infrared (mid-IR) detection with enhanced sensitivity. InSb devices will be useful for many applications, such as gas sensing and imaging. InSb avalanche photodiodes (APDs) monolithically integrated with GaAs substrates were fabricated with diameters ranging from 90 to 200 μm200~\mu \text{m} and extensively characterized at temperatures ranging from 77 K to 300 K. At 120 K a zero-bias responsivity of 2 A/W was measured, corresponding to a quantum efficiency of 55%. An experimental gain value of 10 at a reverse bias of −3 V was obtained at 120 K, which to the best of our knowledge, is the highest ever reported for InSb APDs. These results pave the way for the development of a monolithically integrated mid-IR array with added gain and wavelength tunability

    Investigation of mid-infrared AlInSb LEDs with an n-i-p structure

    Get PDF
    We report on the investigation on mid-infrared AlInSb LEDs with an n-i-p structure. Compared to the conventional AlInSb LEDs with a p-i-n structure, a better current spreading corresponding to a uniform current distribution in the active region is expected in the n-i-p structure because of a high electron mobility in the n-type AlInSb material. The output optical power of laterally injected LEDs were investigated as a function of the device geometry by COMSOL simulations and confirmed by experimental results

    Brane Gas Inflation

    Get PDF
    We consider the brane gas picture of the early universe. At later stages, when there are no winding modes and the background is free to expand, we show that a moving 3-brane, which we identify with our universe, can inflate even though it is radiation-dominated. The crucial ingredients for successful inflation are the coupling to the dilaton and the equation of state of the bulk. If we suppose the brane initially forms in a collision of higher-dimensional branes, then the spectrum of primordial density fluctuations naturally has a thermal origin.Comment: 4 pages, 1 figur

    Integration techniques of pHEMTs and planar Gunn diodes on GaAs substrates

    Get PDF
    This work presents two different approaches for the implementation of pseudomorphic high electron mobility transistors (pHEMTs) and planar Gunn diodes on the same gallium arsenide substrate. In the first approach, a combined wafer is used where a buffer layer separates the active layers of the two devices. A second approach was also examined using a single wafer where the AlGaAs/InGaAs/GaAs heterostructures were designed for the realisation of pHEMTs. The comparison between the two techniques showed that the devices fabricated on the single pHEMT wafer presented superior performance over the combined wafer technique. The DC and small-signal characteristics of the pHEMTs on the single wafer were enhanced after the use of T-gates with 70 nm length. The maximum transconductance of the transistors was equal to 780 mS/mm with 200 GHz maximum frequency of oscillation (fmax). Planar Gunn diodes fabricated in the pHEMT wafer, with 1.3 μm anode-to-cathode separation (LAC) presented oscillations at 87.6 GHz with maximum power of oscillation equal to -40 dBm

    Resonant exciton excitation photoluminescence and dynamics in a GaAs/AlAs multiple quantum well with internal electric field

    Get PDF
    The stability of excitons with large oscillator strengths at room temperature has been of great significance in device applications. In this paper, we report the effects of the ultrafast dissociation of excitons confined in a quantum well on optical characteristics. The photoluminescence spectra show components of higher energy than the excitation energy and a nonlinear increment of the intensity. Furthermore, the spectrally resolved pump–probe signals at the exciton energies elucidate the change in the exciton position. These results indicate the importance of the exciton stability in optical devices, in particular emission type, including terahertz wave, based on excitons

    (Invited) towards a vertical and damage free post-etch InGaAs fin profile: dry etch processing, sidewall damage assessment and mitigation options

    Get PDF
    Based on current projections, III-Vs are expected to replace Si as the n-channel solution in FinFETs at the 7nm technology node. The realisation of III-V FinFETs entails top-down fabrication via dry etch techniques. Vertical fins in conjunction with high quality sidewall MOS interfaces are required for high-performance logic devices. This, however, is difficult to achieve with dry etching. Highly anisotropic etching required of vertical fins is concomitant with increased damage to the sidewalls, resulting in the quality of the sidewall MOS interface being compromised. In this work, we address this challenge in two stages by first undertaking a systematic investigation of dry etch processing for fin formation, with the aim of obtaining high resolution fins with vertical sidewalls and clean etch surfaces. In the second stage, dry etch process optimisation and post-etch sidewall passivation schemes are explored to mitigate the damage arising from anisotropic etching required for the realisation of vertical fins

    Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes

    Get PDF
    Two-photon Rabi splitting in a cavity-dot system provides a basis for multi-qubit coherent control in quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high quality factor photonic crystal cavity with large coupling strengths over 130 μ\mueV. Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby two-photon Rabi splitting between biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.Comment: 12 pages, 4 figure

    Enhanced strong interaction between nanocavities and p-shell excitons beyond the dipole approximation

    Get PDF
    Large coupling strengths in exciton-photon interactions are important for the quantum photonic network, while strong cavity–quantum dot interactions have been focused on s-shell excitons with small coupling strengths. Here we demonstrate strong interactions between cavities and p-shell excitons with a great enhancement by the in situ wave-function control. The p-shell excitons are demonstrated with much larger wave-function extents and nonlocal interactions beyond the dipole approximation. Then the interaction is tuned from the nonlocal to the local regime by the wave function shrinking, during which the enhancement is obtained. A large coupling strength of 210     μ eV has been achieved, indicating the great potential of p-shell excitons for coherent information exchange. Furthermore, we propose a distributed delay model to quantitatively explain the coupling strength variation, revealing the intertwining of excitons and photons beyond the dipole approximation
    • …
    corecore